Non-polydimethylsiloxane devices for oxygen-free flow lithography.

نویسندگان

  • Ki Wan Bong
  • Jingjing Xu
  • Jong-Ho Kim
  • Stephen C Chapin
  • Michael S Strano
  • Karen K Gleason
  • Patrick S Doyle
چکیده

Flow lithography has become a powerful particle synthesis technique. Currently, flow lithography relies on the use of polydimethylsiloxane microchannels, because the process requires local inhibition of polymerization, near channel interfaces, via oxygen permeation. The dependence on polydimethylsiloxane devices greatly limits the range of precursor materials that can be processed in flow lithography. Here we present oxygen-free flow lithography via inert fluid-lubrication layers for the synthesis of new classes of complex microparticles. We use an initiated chemical vapour deposition nano-adhesive bonding technique to create non-polydimethylsiloxane-based devices. We successfully synthesize microparticles with a sub-second residence time and demonstrate on-the-fly alteration of particle height. This technique greatly expands the synthesis capabilities of flow lithography, enabling particle synthesis, using water-insoluble monomers, organic solvents, and hydrophobic functional entities such as quantum dots and single-walled carbon nanotubes. As one demonstrative application, we created near-infrared barcoded particles for real-time, label-free detection of target analytes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stop flow lithography in perfluoropolyether (PFPE) microfluidic channels.

Stop Flow Lithography (SFL) is a microfluidic-based particle synthesis method for creating anisotropic multifunctional particles with applications that range from MEMS to biomedical engineering. Polydimethylsiloxane (PDMS) has been typically used to construct SFL devices as the material enables rapid prototyping of channels with complex geometries, optical transparency, and oxygen permeability....

متن کامل

Microfabrication of polydimethylsiloxane phantoms to simulate tumor hypoxia and vascular anomaly.

We introduce a microfluidic approach to simulate tumor hypoxia and vascular anomaly. Polydimethylsiloxane (PDMS) phantoms with embedded microchannel networks were fabricated by a soft lithography process. A dialysis membrane was sandwiched between two PDMS slabs to simulate the controlled mass transport and oxygen metabolism. A tortuous microchannel network was fabricated to simulate tumor micr...

متن کامل

Patterning, integration and characterisation of polymer optical oxygen sensors for microfluidic devices.

This paper describes a process for the layer-by-layer fabrication and integration of luminescent dye-based optical oxygen sensors into microfluidic devices. Application of oxygen-sensitive platinum(ii) octaethylporphyrin ketone fluorescent dye dissolved in polystyrene onto glass substrates by spin-coating was studied. Soft lithography with polydimethylsiloxane (PDMS) stamps and reactive ion etc...

متن کامل

Double Emulsion Generation Using a Polydimethylsiloxane (PDMS) Co-axial Flow Focus Device.

Double emulsions are useful in a number of biological and industrial applications in which it is important to have an aqueous carrier fluid. This paper presents a polydimethylsiloxane (PDMS) microfluidic device capable of generating water/oil/water double emulsions using a coaxial flow focusing geometry that can be fabricated entirely using soft lithography. Similar to emulsion devices using gl...

متن کامل

Simplified prototyping of perfusable polystyrene microfluidics.

Cell culture in microfluidic systems has primarily been conducted in devices comprised of polydimethylsiloxane (PDMS) or other elastomers. As polystyrene (PS) is the most characterized and commonly used substrate material for cell culture, microfluidic cell culture would ideally be conducted in PS-based microsystems that also enable tight control of perfusion and hydrodynamic conditions, which ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature communications

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2012